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Abstract— The validity of inferences drawn from statistical 

test results depends on how well data meet associated 

assumptions. In a two-level multilevel time series model, the 

standard assumption that the within-individual (level-1) 

residuals are uncorrelated are rarely checked or  little 

information tends to be reported on whether the data satisfy the 

assumption underlying the statistical techniques used. Using a 

simulation approach, the consequences of violating the level-1 

independence of observations assumption on the parameter 

estimates of fixed effects and the associate errors due to bias was 

investigated. It was found that bias which is generally high, 

increases with increase autocorrelated errors, and Full 

maximum likelihood (FML) estimates are more biased than 

Restricted maximum likelihood (REML) estimates. 

 
Index Terms— autocorrelation, multilevel model, repeated 

measures, simulation. 

 

I. INTRODUCTION 

  Many longitudinal studies are designed to investigate 

changes over time in a characteristic which is measured 

repeatedly for each study participant, such as clinical trial in 

which patients are randomly assigned to different treatments 

and repeatedly evaluated over the course of the study. When 

measurements are repeated on the same subjects e.g. animals 

or students, a 2-level hierarchy is established with 

measurement repetitions or occasions as level 1 units and 

subjects as level 2 units. In most cases, the multiple 

observations are taken over time, but they could be over 

space, such data are referred to as 'repeated measures' or 

clustered data . A multilevel problem concerns a population 

with a hierarchical structure. Multilevel models (MLM) were 

designed to analyze repeated measures data generated from a 

hierarchical structure and the analysis of such data can be 

conducted efficiently using a two-level multilevel model. 

    In some cases especially where measurements are made 

close together in time, often the error term is not independent 

through time. Instead, the errors are serially correlated or 

autocorrelated. If the error term is autocorrelated, the 

efficiency of ordinary least-squares (OLS) parameter 

estimates is adversely affected and standard error estimates 

are biased due to failure to account for the correlated structure 

of observations. In this paper, we assume data on different 

subjects are independent, and for simplicity, we assume there 

are measurements at the same equally spaced times on each 

subject. 

   Multilevel models provide a more accurate and 

comprehensive description of relationships in clustered data 
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than do conventional models, by correcting underestimated 

standard errors, by estimating components of variance at 

several levels, and by estimating cluster-specific intercepts 

and slopes [7]. The price of such a powerful model for 

treating hierarchically structured data is the requirement of a 

set of strong mathematical assumptions whose conditions are 

expected to be violated to some degree in actual studies. As 

with other statistical techniques, the assumptions of MLM 

must be valid in order for the estimates and associated 

significance tests to have the desired properties. 

   Multilevel models can accommodate nonindependence of 

observations, a lack of sphericity, missing data, small and/or 

discrepant group sample sizes, and heterogeneity of variance 

across repeated measures [13]. As with most statistical 

models, an important assumption of MLM is that the level-1 

errors ( ) are independently and normally distributed with a 

mean of 0 and a variance of  . This applies to any 

level-1 model using continuous outcome variables. Mixed 

linear models are used with repeated measures data to 

accommodate the fixed effects of covariates and the 

covariation between observations on the same subject at 

different times [9].  One of the main reasons we moved to 

mixed models rather than just working with linear models was 

to resolve non-independencies in our data, also Linear mixed 

models provide a powerful and flexible tool for the analysis of 

a broad variety of data including multilevel data. However, 

mixed models can still violate independence. 

II. INFERENTIAL SETTINGS 

   In ordinary regression analysis, in the case of severe 

violations, a variety of statistical methods for correcting 

nonindependence according to Garson [5] include analysis of 

variance and other general linear model (GLM) methods that 

have been adapted to handle non-independence, but these 

adaptations are problematic. In estimating model parameters 

when there are random effects, it is necessary to adjust for the 

covariance structure of the data. The adjustment made by 

GLM assumes uncorrelated error (that is, it assumes data 

independence) [5]. Another method for correcting 

autocorrelation include modeling  the serial correlation 

explicitly using some error autocorrelation formulation, say 

an Auto Regressive order 1 (AR(1)) process, and then use the 

generalized least square (GLS) to estimate the 

Autocorrelation-Corrected [1]  .  

   In multilevel models, specification assumptions apply at 

each level. Moreover, misspecification at one level can affect 

results at other levels. In most multilevel applications, the 

errors in the level-1 model are assumed to have equal 

variance, . According to Raudenbush & Bryk [10], if the 

level-1 variance  varies randomly over level-2 units, but these 

variances are assumed equal, consequences for inference 

about the level-2 coefficients will be mild, on the other hand if 

the variances depend systematically as a function of level-1 or 
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level-2 predictors, consequences may be more serious. 

Because causes of heterogeneity are quite different in their 

implications, it is strongly advocated to investigate possible 

sources of heterogeneity and model it if found.  

   Finally, it must be emphasized that failure to adequately 

account for correlation among repeated measures can result in 

misleading inferences. For instance, if it is assumed that the 

repeated measures are uncorrelated when in fact there is 

strong positive correlation, the nominal standard errors 

(resulting from the naive assumption of independence or 

uncorrelated repeated measures) will be incorrect [4]. 

Autocorrelated data are very common for time ordered data, 

hence, statistical analysis of repeated measures data must 

address the issue of covariation between measures on the 

same unit. A key argument being made is that a systematic 

study investigating the effects of this violation is important 

and, therefore, addressed in this paper. 

   The main question to be answered in this paper is, what is 

the effect of error due to bias on the efficiency of maximum 

likelihood (ML) parameters estimates as a result of 

autocorrelation. Related questions are whether or not the 

severity of this effect is influenced by the number of 

measurement occasions, the degree of autocorrelation and the 

number of subjects. The first two conditions are chosen 

because when the model includes both random intercepts and 

slopes (or randomly varying coefficients for any functions of 

time), the variability of the response can change as a function 

of the times of measurement, and the magnitudes of the 

correlations between measurements from the same individual 

can depend on the time between them.   

III. MODEL CONCEPTS  

Consider a simple linear regression model for the 

measurement  of individual  on 

occasion  

                 (1)                        

Ignoring subscripts, this model represents the regression of 

the outcome variable  on the independent variable time 

(denoted ). The subscripts keep track of the particulars of 

the data, namely whose observation it is (subscript  ) and 

when was this observation made (the subscript j ) . The 

independent variable   gives a value to the level of time, and 

may represent time in weeks, months, etc. Since  and  

carry both  and  subscripts, both the outcome variable and 

the time variable are allowed to vary by individuals and 

occasions. 

    In linear regression models, like “(1),” the errors  are 

assumed to be normally and independently distributed in the 

population with zero mean and common variance . This 

independence assumption makes the model given in “(1),” an 

unreasonable one for repeated measure data. This is because 

the outcomes  are observed repeatedly from the same 

individuals, and so it is much more reasonable to assume that 

errors within an individual are correlated to some degree. 

Furthermore, the above model posits that the change across 

time is the same for all individuals since the model parameters 

( , the intercept or initial level, and , the linear change 

across time) do not vary by individuals. For both of these 

reasons, it is useful to add individual-specific effects into the 

model that will account for the data dependency and describe 

differential time trends for different individuals. This is 

precisely what Multilevel Time Series Models for repeated 

data do. 

   Estimations of repeated measures data are facilitated by 

using a multi-level model approach, which allows the 

estimation of within-individual (level-1) and 

between-individual (level-2) variations in outcomes. At first, 

we established a regression equation for the first level 

variables, in which the tracking results that came from 

different observation times were the first layer and the 

invariant individual characteristics were the second layer 

data. 

   In the first floor of the data structure, the track observation 

result was considered as the dependent variable. 

                                    (2) 

In a two-level model each term has two subscripts, the first of 

which corresponds to level 1 while the second refers to level 

2. As in (2), subscript "0" means intercept, subscript "1" 

means slope,   subscript " " means the  observation 

object, Subscript " " indicates the  observation time. 

"  is the intercept of the equation, it indicates the average 

of the  observed objects.  

 "  is the regression coefficient, it indicates the changing 

rate of the  observation object. 

 "  means the values of the variable  when the  

observed object is in the  observation time. 

  "  means residual, the implication is that the measured 

value  of the  object in the  observation time that 

cannot be explained by the independent variable . 

Equation (2) is similar to the general regression equation, the 

only difference is, intercept and slope are not constant. 

   In the second layer of the data structures, the intercept and 

slope are used as the dependent variable in (2), and individual 

characteristics are considered as independent variables, then 

we create two regression equations for the second layer: 

 
 

where                   

is referred to as the null model. 

In equations (3) and (4), each parameter has two subscripts, if 

the first subscripts is "0", this is the parameter that relates to 

the intercept of (2). if the first subscript is "1", this is the 

parameter that relates to the slope of (2). if the second 

subscripts is "0", it means the intercept part of the second 

layer equation, if the second subscript is "1", it means the 

slope part of the second layer equation. 

 is the intercept of (3),  it can be understood as the average 

of the dependent variable Y when the independent variable 

 is 0. 

 is the value on the level-2 predictor 

   is the regression coefficients of the variables   in (3), 

it can be understood as the impact of the variable  to the 

initial value of the dependent variable Y. 

  is the intercept of (4), it can be understood as the 

changing rate of observed object when the variable  is 0. 

 is the regression coefficient of the variable   in (4), it 

can be understood as the effect of the variable  on the 

changing rate.  
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 is the residual of (3), is the intercept deviation for subject 

 it represents the influence of individual  on his or her 

repeated observations. 

 is the residual of (4)  is the slope deviation for subject  

The assumption regarding the independence of the errors is 

one of conditional independence, that is, they are independent 

conditional on  and . 

Our model (2) with one time-level and one individual level 

explanatory variable can be  written as a single complex 

multilevel time series regression equation by  

Substituting   for , and Substituting 

  for , and redistributing, we have: 

  

                                         (6) 

Rearranging, so that the fixed effects appear first, followed by 

the random effects, leads us to our final mixed model, defined 

as 

 

                                            (7) 

Gill [6] remarks that " In order to allow for the classification 

of variables and coefficients in terms of the level of hierarchy 

they affect, a combined model is created by rearranging so 

that the fixed effects appear first, followed by the random 

effects. 

The term  is an interaction term that appears in the 

model because of modeling the varying regression slope  

of the time-level variable  with the individual level 

variable .  

   In equation (7), the errors are no longer independent across 

the level units. The terms   and  demonstrate that there 

is dependency among the level-1 units nested within each 

level-2 unit. Furthermore,  and  may have different 

values within level-2 units, leading to heterogeneous 

variances of the error terms [12]. That is (7) shows that the 

composite error structure,   is now clearly 

heteroscedastic since it is conditioned on level of the 

explanatory variable. 

IV. METHOD 

The simulation model and procedure 

   We use two different simple two-level models, with one 

explanatory variable each at the individual level and one 

explanatory variable at the subject level, conforming to 

equation (7) above.  The model used in the process of 

generating data for the present study is the first model shown 

below with W replaced by Z, which henceforth will be 

referred to as autocorrelated model.. 

 

Level-1:              (2 repeated) 

Level-2:                  (8) 

                               (9) 

 .  

Thus,                    (10)        

where  depends on q autocorrelation parameters, with q 

varying depending on the type of autocorrelated error 

structure being considered. 

   The motivation lies in the need to allow for patterns of 

dependence, rather than complete independence among 

response values. The simplest way to allow such dependence 

is to assume    with  of dimension 

, symmetric and positive definite or semi positive 

definite ( which allows any covariance matrix).  

   The second model is given below, which will henceforth be 

referred to as standard model.  

Level-1:     (2 repeated) 

Level-2:      (8 repeated) 

                    (9 repeated) 

 .  

Thus,     (11)  

 

V. ESTIMATION METHODS FOR VARIANCE 

COMPONENTS   

   For the purpose of this study, used were made of R program 

to estimate the parameters. The estimation methods are 

compared in relation to the number of subjects, number of 

measurement occasion, and autocorrelation coefficient under 

the following conditions: 

I. autocorrelation coefficients of 0.3,  0.7,  0.99 

II. variances of intercept and slopes and their 

covariances of  12.63, 2.08 and -1.42 

respectively 

III. numbers of subjects  30, 50, and 100 

IV. numbers of observation within subjects   3, 

5, and 10 

V. 1000 replication for each condition 

 For the regression coefficients, 1.00 was 

chosen for the intercept, and 0.3 for all the 

regression slopes [2] [8]. The first level 

variance   was fixed at 12.22, while the 

error terms in the simulated data are auto 

regressively correlated. The sizes of the 

conditions are partially based on literature 

and partially on practical experience. 

VI. RESULTS 

Coverage 

    In order to investigate the influence of the number of 

subjects, the autocorrelation coefficients and the number of 

measurement occasions on the estimation of error of bias on 

the parameter estimates, the coverage  per condition was 

calculated to describes the uncertainty inherent in our 

estimate, and describes a range of values within which we can 

be reasonably sure that the true effect actually lies. 

   Wald simplest 95% confidence intervals (CI) on the 

estimated average slopes were constructed, by taking the 

point estimate  ±1.96 estimated standard errors in order to 

determine lopsidedness of coverage resulting from errors due 

to bias and find the influence of the number of subjects, the 

autocorrelation coefficient and the number of measurement 

occasions on the constructed CI for the parameter estimates. 

More specifically, when using the Wald Confidence 

Interval,  two points on either side of MLE are chosen such 

that they are equidistant from MLE value (MLE  ±  SE * 

(1-alpha)/2 percentile of Normal distribution).  

   The width of REML confidence interval estimates are wider 

than the ML confidence interval, but the differences are small. 

In standard multi-level model, combinations with same 
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numbers of subjects and measurements occasion appear to 

have the same width as their prediction interval, this adds 

quite a bit to our understanding of the variability in our 

random coefficients. Also observed from the constructed 

confidence interval, there is lopsidedness of coverage 

resulting in estimates falling more frequently to one side than 

the other of the true parameter.  

   To substantiate our claim, standard normal distribution was 

used to estimate the expected percentage of regression 

coefficients that are less than 0.3 under autocorrelated model 

(ML𝛺), and found to be within the range of 0.15% to 100%. 

Lopsidedness of coverage is a direct consequence of the bias 

in the multilevel point estimator, on which the Wald interval 

is centered. Despite this problem, multilevel Wald 95% 

intervals appear to provide conservatively valid (i.e. at least 

95%)  average coverage for the parameter estimates [11].  

 

   In our constructed 95% confidence interval, subjects 

(level-2 units) with low numbers of measurement occasion 

and low autocorrelation coefficients are predicted to have a 

wider confidence interval than subjects with high numbers of 

measurement occasion and high autocorrelation coefficient. 

Similarly, differences between the number of subjects 

indicate relationship between the width of the confidence 

interval. Not surprising, intercept and slope coefficients are 

random variables that vary across subjects, the specific values 

for the intercept and slope coefficients are subjects 

characteristics. 

VII. EVALUATING BIAS 

   For the assessment of the parameter estimates, the absolute 

bias was considered for each parameter. 

Table I.  Comparing the bias of slopes for measurement occasion, t = 3 for two estimators under standard and 

autocorrelated models, for different numbers of subject N and different autocorrelation coefficient 𝜌  as a function of 

the slope. 
 ML (𝛺) REML (𝛺) ML  REML  

N 𝜌 𝜌 𝜌 𝜌 

 0.3 0.7 0.99 0.3 0.7 0.99 0.3 0.7 0.99 0.3 0.7 0.99 

30 -0.6267 -0.7429 
-0.7843 

 

-0.6172 

 

-0.7328 

 
-0.7740 

-0.4629 

 

-0.4106 

 

-0.3726 

 

-0.4257 

 

-0.3734 

 

-0.3354 

 

50 
0.3721 

 

0.4295 

 

0.4654 

 

0.3838 

 

0.4407 

 

0.4765 

 

0.3542 

 

0.3775 

 

0.3943 

 

0.3578 

 

0.3811 

 

0.3980 

 

100 
0.5482 

 

0.6212 

 

0.6683 

 

0.5575 

 

0.6304 

 

0.6775 

 

0.5300 

 

0.5781 

 

0.6130 

 

0.5229 

 

0.5710 

 

0.6060 

 

Where 𝛺 represents autocorrelation matrix and  is the identity matrix. 

 

Table II.   Comparing the bias of slopes for measurement occasion, t = 5 for two estimators under standard and 

autocorrelated models, for different numbers of subject N and different autocorrelation coefficient 𝜌  as a function of 

the slope. 
 ML (𝛺) REML (𝛺) ML  REML  

N 𝜌 𝜌 𝜌 𝜌 

 0.3 0.7 0.99 0.3 0.7 0.99 0.3 0.7 0.99 0.3 0.7 0.99 

30 
-0.5107 

 

-0.6591 

 

-0.6925 

 

-0.5183 

 

-0.6653 

 

-0.6987 

 

-0.3521 

 

-0.3670 

 

-0.3778 

 

-0.3414 

 

-0.3563 

 

-0.3671 

 

50 
0.1776 

 

0.3169 

 

0.3377 

 

0.1649 

 

0.3050 

 

0.3260 

 

-0.0257 

 

-0.0290 

 

-0.0314 

 

-0.0293 

 

-0.0326 

 

-0.0350 

 

10

0 

0.8363 

 

0.9759 

 

0.9979 

 

0.8347 

 

0.9734 

 

0.9952 

 

0.6397 

 

0.6402 

 

0.6405 

 

0.6326 

 

0.6331 

 

0.6335 

 

Where 𝛺 represents autocorrelation matrix and  is the identity matrix. 

 

Table III.   Comparing the bias of slopes for measurement occasion, t = 10 for two estimators under standard and 

autocorrelated models, for different numbers of subject N and different autocorrelation coefficient 𝜌  as a function of 

the slope. 
 ML (𝛺) REML (𝛺) ML  REML  

N 𝜌 𝜌 𝜌 𝜌 

 0.3 0.7 0.99 0.3 0.7 0.99 0.3 0.7 0.99 0.3 0.7 0.99 

30 -0.2669 

 

0.0363 

 

0.1196 

 

-0.2699 

 

0.0314 

 

0.1141 

 

-0.4884 

 

-0.4770 

 

-0.4687 

 

-0.4930 

 

-0.4816 

 

-0.4733 

 

50 0.9309 

 

1.3538 

 

1.4423 

 

0.9259 

 

1.3475 

 

1.4356 

 

0.5867 

 

0.5901 

 

0.5925 

 

0.5855 

 

0.5889 

 

0.5913 

 

100 0.2546 

 

0.3573 

 

0.3771 

 

0.2519 

 

0.3531 

 

0.37254 

 

0.1663 

 

0.1656 

 

0.1651 

 

0.1671 

 

0.1664 

 

0.1659 

 

Where 𝛺 represents autocorrelation matrix and  is the identity matrix. 

 

 

.    
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VIII. COMMENT:  

   As can be seen in Table I to Table III, the random estimator 

with or without autocorrelated errors, generally show a large 

bias for small numbers of repeated measures and generally, an 

increase bias when 𝝆, the autocorrelation coefficient 

increases. The difference between MLE and RMLE estimates 

are very small and inconsistent over conditions. Generally, 

the bias of MLE is larger than the bias of RMLE. Similarly, 

autocorrelated models exhibit higher bias compared to 

standard multilevel model. Varying the number of 

observations within a fixed subject size does not provide a 

clear indication of neither an increase nor decrease in bias.  

   As for the amount of bias in the ML parameter estimates of 

the standard model, we see that the naive two-stage standard 

model consistently underestimates the true bias  when 

incorrectly assuming compound symmetry. 

The observations above are in consistent with theory, 

Demidenko [3] state that: 

 For some (co)variance  parameters, when few subjects are 

sampled, no matter how many observations are sampled per 

unit, problematic bias remains. 

 Complex models exhibit greater bias than simpler models. 

 Full maximum likelihood (FML) estimates are more biased 

than Restricted maximum likelihood (REML) estimates. 

 Raudenbush and Bryke [10] reported that RML estimates 

variance components after removing the fixed effects from the 

model, can lead theoretically to less bias than FML, especially 

when the number of groups is small. 

IX. DISCUSSION AND CONCLUSION 

   Bias which is generally high, increases with increase 

autocorrelated errors The results illustrate the generality of 

the theorem and the substantial bias that can occur. Even with 

a correctly specified covariance model, observed bias for 

smaller sample sizes is large, though consistent with the 

theory, an indication that the result of shrinkage are most 

noticeable if the number of observations in single individual is 

small. It seems the bias has a net direction and magnitude so 

that averaging it over a large number of observations does not 

eliminate its effect, and Increasing the sample size is not 

going to help.  

   In the 95% CI for the slopes, we see that FML slopes have 

greater precision than REML. Another advantage of 

multilevel models is that they incorporate the precision of 

estimates into the model.  When autocorrelation in the error is 

considered, heterogeneity was found to be lost (incorrectly) 

contrary to our usual expectation for random-effects models, 

where precision will decrease with increasing heterogeneity 

and confidence intervals will be widen correspondingly. 

Based on these results, it can be concluded that having 

autocorrelated errors in the repeated measures data increase 

the biasness of ML estimates with autocorrelated model 

exhibiting large bias compared to standard model. Analysing 

the data ignoring the existing autocorrelated errors mask the 

effect of error due to bias on the parameter estimates and  our 

estimators (ML) under autocorrelated model, though with 

large bias, is expected to reduce some loss 

function (particularly mean squared error) compared with 

unbiased estimators (since our estimators are shrinkage 

estimators). Similarly, the FML estimates with  large bias are 

not necessarily less accurate than REML estimates as will be 

judged by the expected mean square error.  

   The shorter FML-based intervals resulting from the 

assumption that the fixed effects in the model are equal to 

their ML estimates is expected to converge as the number of 

measurement occasions j becomes large.   
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